Using Bayes' Rule to Model Multisensory Enhancement in the Superior Colliculus
نویسندگان
چکیده
The deep layers of the superior colliculus (SC) integrate multisensory inputs and initiate an orienting response toward the source of stimulation (target). Multisensory enhancement, which occurs in the deep SC, is the augmentation of a neural response to sensory input of one modality by input of another modality. Multisensory enhancement appears to underlie the behavioral observation that an animal is more likely to orient toward weak stimuli if a stimulus of one modality is paired with a stimulus of another modality. Yet not all deep SC neurons are multisensory. Those that are exhibit the property of inverse effectiveness: combinations of weaker unimodal responses produce larger amounts of enhancement. We show that these neurophysiological findings support the hypothesis that deep SC neurons use their sensory inputs to compute the probability that a target is present. We model multimodal sensory inputs to the deep SC as random variables and cast the computation function in terms of Bayes' rule. Our analysis suggests that multisensory deep SC neurons are those that combine unimodal inputs that would be more uncertain by themselves. It also suggests that inverse effectiveness results because the increase in target probability due to the integration of multisensory inputs is larger when the unimodal responses are weaker.
منابع مشابه
Why aren't all deep superior colliculus neurons multisensory? A Bayes' ratio analysis.
Multisensory neurons in the deep superior colliculus (SC) show response enhancement to cross-modal stimuli that coincide in time and space. However, multisensory SC neurons respond to unimodal input as well. It is thus legitimate to ask why not all deep SC neurons are multisensory or, at least, develop multisensory behavior during an organism's maturation. The novel answer given here derives fr...
متن کاملComputing Multisensory Target Probabilities on a Neural Map
The superior colliculus is organized topographically as a neural map. The deep layers of the colliculus detect and localize targets in the environment by integrating input from multiple sensory systems. Some deep colliculus neurons receive input of only one sensory modality (unimodal) while others receive input of multiple modalities. Multimodal deep SC neurons exhibit multisensory enhancement,...
متن کاملModeling Cross-Modal Enhancement andModality-Specic Suppression in Multisensory Neurons
Cross-modal enhancement (CME) occurs when the neural response to a stimulus of one modality is augmented by another stimulus of a different modality. Paired stimuli of the same modality never produce supraadditive enhancement but may produce modality-specic suppression (MSS), in which the response to a stimulus of one modality is diminished by another stimulus of the same modality. Both CME an...
متن کاملModeling Cross-Modal Enhancement and Modality-Specific Suppression in Multisensory Neurons
Cross-modal enhancement (CME) occurs when the neural response to a stimulus of one modality is augmented by another stimulus of a different modality. Paired stimuli of the same modality never produce supra-additive enhancement but may produce modality-specific suppression (MSS), in which the response to a stimulus of one modality is diminished by another stimulus of the same modality. Both CME ...
متن کاملMultimodality in the superior colliculus: an information theoretic analysis.
The deep superior colliculus (DSC) integrates multisensory input and triggers an orienting movement toward the source of stimulation (target). It would seem reasonable to suppose that input of an additional modality should always increase the amount of information received by a DSC neuron concerning a target. However, of all DSC neurons studied, only about one half in the cat and one-quarter in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 12 5 شماره
صفحات -
تاریخ انتشار 2000